The Arakawa–kaneko Zeta Function and Poly-bernoulli Polynomials

نویسندگان

  • Yoshinori Hamahata
  • Y. HAMAHATA
چکیده

The purpose of this paper is to introduce a generalization of the Arakawa–Kaneko zeta function and investigate their special values at negative integers. The special values are written as the sums of products of Bernoulli and poly-Bernoulli polynomials. We establish the basic properties for this zeta function and their special values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries of Bernoulli polynomial series and Arakawa-Kaneko zeta functions

The Arakawa-Kaneko zeta functions interpolate the poly-Bernoulli numbers at the negative integers and their values at positive integers are connected to multiple zeta values. We give everywhere-convergent series expansions of these functions in terms of Bernoulli polynomials and Dirichlet series related to harmonic numbers, exhibiting their explicit analytic continuation. Differentiating the Ba...

متن کامل

Poly-Cauchy polynomials

We introduce the poly-Cauchy polynomials which generalize the classical Cauchy polynomials, and investigate their arithmetical and combinatorial properties. These polynomials are considered as analogues of the poly-Bernoulli polynomials that generalize the classical Bernoulli polynomials. Moreover, we investigate the zeta functions which interpolate the poly-Cauchy polynomials. The values of th...

متن کامل

A note on poly-Bernoulli numbers and multiple zeta values

We review several occurrences of poly-Bernoulli numbers in various contexts, and discuss in particular some aspects of relations of poly-Bernoulli numbers and special values of certain zeta functions, notably multiple zeta values.

متن کامل

ar X iv : m at h / 05 02 20 4 v 1 [ m at h . N T ] 1 0 Fe b 20 05 BARNES ’ TYPE MULTIPLE CHANGHEE q - ZETA FUNCTIONS

In this paper, we give new generating functions which produce Barnes' type multiple generalized Changhee q-Bernoulli polynomials and poly-nomials. These functions are very important to construct multiple zeta functions. By using Mellin transform's formula and Cauchy Theorem , we prove the analytic continuation of Barnes' type multiple Changhee q-zeta function. Finally we give some relations bet...

متن کامل

On Functions of Arakawa and Kaneko and Multiple Zeta Functions

We study for s ∈ N the functions ξk(s) = 1 Γ(s) R ∞ 0 t et−1 Lik(1−e )dt, and more generally ξk1,...,kr (s) = 1 Γ(s) R ∞ 0 t et−1 Lik1,...,kr (1 − e )dt, introduced by Arakawa and Kaneko [2] and relate them with (finite) multiple zeta functions, partially answering a question of [2]. In particular, we give an alternative proof of a result of Ohno [8].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014